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We consider a vertex model on the simple-quartic lattice defined by line graphs
on the lattice for which there is always an odd number of lines incident at a
vertex. This is the odd 8-vertex model which has eight possible vertex configu-
rations. We establish that the odd 8-vertex model is equivalent to a staggered
8-vertex model. Using this equivalence we deduce the solution of the odd
8-vertex model when the weights satisfy a free-fermion condition. It is found
that the free-fermion model exhibits no phase transitions in the regime of posi-
tive vertex weights. We also establish the complete equivalence of the free-
fermion odd 8-vertex model with the free-fermion 8-vertex model solved by Fan
and Wu. Our analysis leads to several Ising model representations of the
free-fermion model with pure 2-spin interactions.
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1. INTRODUCTION

In a seminal work which opened the door to a new era of exactly solvable
models in statistical mechanics, Lieb (1, 2) in 1967 solved the problem of the
residual entropy of the square ice. His work led soon thereafter to the
solution of a host of more general lattice models of phase transitions. These
include the five-vertex model, (3, 4) the F model, (5) the KDP model, (6) the
general six-vertex model, (7) the free-fermion model solved by Fan and
Wu, (8) and the symmetric 8-vertex model solved by Baxter. (9) All these
previously considered models are described by line graphs drawn on a
simple-quartic lattice where the number of lines incident at each vertex is
even, and therefore can be regarded as the ‘‘even’’ vertex models.
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Fig. 1. Vertex configurations of the odd 8-vertex model and the associated weights.

In this paper we consider the odd vertex models, a problem that does
not seem to have attracted much past attention. Again, one draws line
graphs on the simple-quartic lattice but with the restriction that the number
of lines incident at a vertex is always odd. There are again eight possible
ways of drawing lines at a vertex, and this leads to the odd 8-vertex model.
Besides being a challenging mathematical problem by itself, as we shall
see the odd 8-vertex model includes some well-known unsolved lattice-
statistical problems. It also finds applications in enumerating dimer
configurations. (10)

Consider a simple-quartic lattice of N vertices and draw lines on the
lattice such that the number of lines incident at a vertex is always odd,
namely, 1 or 3. There are eight possible vertex configurations which are
shown in Fig. 1. To vertices of type i (=1, 2,..., 8) we associate weights
ui > 0. Our goal is to compute the partition function

Z12 · · · 8 — Z(u1, u2,..., u8)=C
o.l.g.

un11 u
n2
2 · · · u

n8
8 (1)

where the summation is taken over all aforementioned odd line graphs, and
ni is the number of vertices of the type (i). The per-site ‘‘free energy’’ is
then computed as

k= lim
NQ.

1
N
ln Z12 · · · 8. (2)

The partition function (1) possesses obvious symmetries. An edge can
either have a line or be vacant. By reversing the line-vacancy role one
obtains the symmetry

Z12345678=Z21436587. (3)

Similarly, the left-right and up-down symmetries dictate the equivalences

Z12345678=Z12347856=Z34125678, (4)

and successive 90° counter-clockwise rotations of the lattice lead to

Z12345678=Z78561243=Z34127856=Z56783421. (5)

These are intrinsic symmetries of the odd 8-vertex model.
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The odd 8-vertex model encompasses an unsolved Ashkin–Teller
model (11) as a special case (see below). It also generates other known solu-
tions. For example, it is clear from Fig. 1 that by taking

u1=y, u3=1

u5=x, u7=1

u2=u4=u6=u8=0

(6)

(and assuming periodic boundary conditions) the line graphs generate close-
packed dimer configurations on the simple-quartic lattice with activities x
and y. The solution of (1) in this case is well-known. (12, 13)

2. EQUIVALENCE WITH A STAGGERED VERTEX MODEL

Our approach to the odd 8-vertex model is to explore its equivalence
with a staggered 8-vertex model. We first recall the definition of a
staggered 8-vertex model. (14)

A staggered 8-vertex model is an (even) 8-vertex model with sublattice-
dependent vertex weights. It is defined by 16 vertex weights {wi} and {w

−

i},
i=1, 2,..., 8, one for each sublattice, associated with the 8 (even) line graph
configurations shown in Fig. 2.

The partition function of the staggered 8-vertex model is

Zstag(w1, w2,..., w8; w
−

1, w
−

2,..., w
−

8)=C
e.l.g.

D
8

i=1
[wi ni(w

−

i)
niŒ] (7)

where the summation is taken over all even line graphs, and ni and n
−

i are,
respectively, the numbers of vertices with weights wi and w

−

i. It is conve-
nient to abbreviate the partition function by writing

Zstag(w1, w2,..., w8; w
−

1, w
−

2,..., w
−

8) — Zstag(12345678; 1Œ2Œ3Œ4Œ5Œ6Œ7Œ8Œ). (8)
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Fig. 2. An equivalent staggered 8-vertex model and the associated spin configurations on
the dual.
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When wi=w
−

i for all i, the staggered 8-vertex model reduces to the
usual 8-vertex model with uniform weights, which remains unsolved for
general wi. When wi ] w

−

i the problem is obviously even harder. The con-
sideration of the sublattice symmetry implies that we have

Zstag(12345678; 1Œ2Œ3Œ4Œ5Œ6Œ7Œ8Œ)=Zstag(1Œ2Œ3Œ4Œ5Œ6Œ7Œ8Œ; 12345678). (9)

Returning to the odd 8-vertex model we have the following result:

Theorem. The odd 8-vertex model (1) is equivalent to a staggered
8-vertex model (8) with the equivalence

Z12 · · · 8=Zstag(u1, u2, u3, u4, u5, u6, u7, u8; u3, u4, u1, u2, u8, u7, u6, u5)

=Zstag(u5, u6, u8, u7, u1, u2, u3, u4; u7, u8, u6, u5, u4, u3, u1, u2),

or, in abbreviations,

Z12 · · · 8=Zstag(12345678; 34128765)

=Zstag(56871243; 78654312). (10)

Proof. Let A and B be the two sublattices each having N/2 sites.
Consider the set S of N/2 edges each of which connecting an A site to a B
site immediately below it. By reversing the roles of occupation and vacancy
on these edges, the vertex configurations of Fig. 1 are converted into con-
figurations with an even number of incident lines. Because of the particular
choice of S, however, the vertex weights are sublattice-dependent and we
have a staggered 8-vertex model.

For sites on sublattice A, the conversion maps a vertex type (i) in
Fig. 1 into a type (i) in Fig. 2 so that wi=ui for all i on A. At B sites the
conversion maps type (3) in Fig. 1 to type (1) in Fig. 2, (4) to (2) with
w −1=u3, w

−

2=u4, etc. Writing compactly and rearranging the B weights
according to configurations in Fig. 2, the mappings are

w{12345678}Q u{12345678}, at A sites

wŒ{12345678}Q u{34128765}, at B sites.
(11)

This establishes the first line in (10).
The line-vacancy conversion can also be carried out for any of the

three other edge sets connecting every A site to the B site above it, on the
right, or on the left. It is readily verified that these considerations lead to
the equivalence given by the second line in (10), and two others obtained
from (10) by applying the sublattice symmetry (9). L
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Remark. Further equivalences can be obtained by combining
(3)–(5) with the sublattice symmetry (9).

The special case of

u1=u2=u3=u4

u5=u6, u7=u8
(12)

is an Ashkin–Teller model as formulated in ref. 15 which remains unsolved.
Another special case is when the weights satisfy

u1u2+u3u4=u5u6+u7u8. (13)

Then from (10) the staggered 8-vertex model weights satisfy the free-
fermion condition

w1w2+w3w4=w5w6+w7w8

w −1w
−

2+w
−

3w
−

4=w
−

5w
−

6+w
−

7w
−

8

(14)

for which the solution has been obtained in ref. 14. This case is discussed in
the next section.

3. THE FREE-FERMION SOLUTION

In this section we consider the odd 8-vertex model (1) satisfying the
free-fermion condition (13). In the language of the first line of the equiva-
lence (10) we have the staggered vertex weights

w1=w
−

3=u1, w2=w
−

4=u2

w3=w
−

1=u3, w4=w
−

2=u4

w5=w
−

7=u5, w6=w
−

8=u6

w7=w
−

5=u1, w8=w
−

6=u8,

(15)

and hence the condition (14) is satisfied. This leads to the free-fermion
staggered 8-vertex model studied in ref. 14. Using results of ref. 14 and the
weights (15), we obtain after a little reduction the solution

k=
1

16p2
F
2p

0
dh F

2p

0
df ln F(h, f) (16)
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where

F(h, f)=2A+2D cos(h−f)+2E cos(h+f)+4D1 sin2 f+4D2 sin2 h (17)

with

A=(u1u3+u2u4)2+(u5u7+u6u8)2

D=(u5u7)2+(u6u8)2−2u1u2u3u4

E=−(u1u3)2−(u2u4)2+2u5u6u7u8

D1=(u1u2−u5u6)2 > 0

D2=(u3u4−u5u6)2 > 0.

(18)

As an example, specializing (16) to the weights (6) for the dimer problem,
we have A=x2+y2, D=x2, E=−y2, D1=D2=0, and (16) leads to the
known dimer solution (12, 13)

kdimer=
1
p2

F
p/2

0
dw F

p/2

0
dwŒ ln(4x2 sin2 w+4y2 sin2 wŒ), (19)

which has no phase transitions. More generally for ui > 0 we have
A > |D|+|E| and hence

F(h, f) > 0.

As a result, the free energy k given by (16) is analytic and there is no sin-
gularity in k implying that the odd free-fermion 8-vertex model has no
phase transition.

4. EQUIVALENCE WITH THE FREE-FERMION MODEL OF FAN AND

WU

The free energy (16) is of the form of that of the free-fermion model
solved by Fan and Wu. (8) To see this we change integration variables in
(16) to

a=h+f, b=h−f, (20)

the expression (16) then assumes the form

k=
1

16p2
F
2p

0
da F

2p

0
db ln[2A1+2E cos a+2D cos b

−2D1 cos(a−b)−2D2 cos(a+b)] (21)
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where, after making use of (13),

A1=A+D1+D2

=(u1u2+u3u4)2+(u1u3)2+(u2u4)2+(u5u7)2+(u6u8)2.

Comparing (21) with Eq. (16) of ref. 8, we find

k=kFF/2 (22)

where kFF is the per-site free energy of an 8-vertex model with uniform
weights w1, w2,..., w8 satisfying the free-fermion condition

w1w2+w3w4=w5w6+w7w8 (23)

and

A1=(w21+w
2
2+w

2
3+w

2
4)/2

D=w1w4−w2w3

E=w1w3−w2w4

D1=w1w2−w5w6

D2=w5w6−w3w4.

(24)

We can solve for w1, w2, w3, w4, and w5w6 from the five equations in (24),
and then determine w7w8 from (23).

By equating (24) with (18), it can be verified that one has

(−w1+w2+w3+w4)2=2(A1−D−E−D1−D2)=v21

(w1−w2+w3+w4)2=2(A1+D+E−D1−D2)=v22

(w1+w2−w3+w4)2=2(A1+D−E+D1+D2)=v23

(w1+w2+w3−w4)2=2(A1−D+E+D1+D2)=v24,

(25)

where3

3 The apparent asymmetry in the expression of v3 can be traced to the choice of the edge set S
used in Section 2 in deducing the equivalent staggered 8-vertex model.

v1=2(u1u3+u2u4)

v2=2(u5u7+u6u8)

v3=2`(u1u2+u3u4)2+(u1u3−u2u4)2+(u5u7−u6u8)2

v4=2(u1u2+u3u4).

(26)
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Then, taking the square root of (25), one obtains the explicit solution

wi=(v1+v2+v3+v4−2vi)/4, i=1, 2, 3, 4. (27)

The 4th line of (24) now yields

w5w6=w1w2−(u1u2−u5u6)2, (28)

and w7w8 is obtained from (23).
The free-fermion model is known (8) to be critical at

2wi=w1+w2+w3+w4, i=1, 2, 3, 4 (29)

which is equivalent to vi=0. It is then clear from (26) that the critical point
(29) lies outside the region ui > 0 and this confirms our earlier conclusion
that the free-fermion odd 8-vertex model does not exhibit a transition in
the regime of positive weights. Our results also show that the model with
some ui=0, e.g., u7=u8=0, is critical. This is reminiscent to the known
fact of the even vertex models that the 8-vertex model is critical in the
6-vertex model subspace.

Finally, we point out that the equivalence with a free-fermion model
described in this section is based on the comparison of the free energies of
the two models in the thermodynamic limit. It remains to be seen whether a
mapping can be established which leads to (27) directly, and thus the word
‘‘equivalence’’ is used in a weaker sense.

5. ISING REPRESENTATIONS OF THE FREE-FERMION MODEL

The free-fermion odd 8-vertex model can be formulated as Ising
models with pure 2-spin interactions in several different ways. In the pre-
ceding section we have established its equivalence with the Fan–Wu free-
fermion model. Baxter (16) has shown that the Fan–Wu free-fermion model
is equivalent to a checkerboard Ising model and that asymptotically it can
be decomposed into four overlapping Ising models. It follows that the odd
8-vertex model possesses the same properties, namely, it is equivalent to a
checkerboard Ising model and can be similarly decomposed asymptotically.
We refer to ref. 16 for details of analysis.

An alternate Ising representation can be constructed as follows: Con-
sider the equivalent staggered 8-vertex model given in the first line of (10).
We place Ising spins on dual lattice sites as shown in Fig. 2 and write the
partition function as

ZIsing= C
spin config.

D
A
W(a, b, c, d)D

B
WŒ(a, b, c, d) (30)
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Fig. 3. Ising interactions inW(a, b, c, d).

where the summation is taken over all spin configurations, and W and WŒ
are, respectively, the Ising Boltzmann factors associated with four spins
a, b, c, d=±1 surrounding each A and B sites. Since the vertex to spin
configuration mapping is 1 : 2, we have the equivalence

Z12 · · · 8=ZIsing/2. (31)

We next require the Ising Boltzmann factors W and WŒ to reproduce
the vertex weights w and wŒ in (10). Now to each vertex in the free-fermion
model there are six independent parameters after taking into account the
free-fermion condition (13) and an overall constant. We therefore need six
Ising parameters which we introduce as interactions shown in Fig. 3 for
W(a, b, c, d) on sublattice A. Namely, we write

W(a, b, c, d)=2reM(ad−bc)/2+P(cd−ab)/2 cosh(J1a+J2b+J3c+J4d) (32)

where r is an overall constant. Explicitly, a perusal of Fig. 2 leads to the
expressions

u1=2r cosh(J1+J2+J3+J4), u2=2r cosh(J1−J2+J3−J4)

u3=2r cosh(J1−J2−J3+J4), u4=2r cosh(J1+J2−J3−J4)

u5=2reM+P cosh(J1−J2+J3+J4), u6=2re−M−P cosh(J1+J2+J3−J4)

u7=2reP−M cosh(−J1+J2+J3+J4), u8=2reM−P cosh(J1+J2−J3+J4).
(33)

These weights satisfy the free-fermion condition (13) automatically.4

4 Expressions in Eq. (33) are the same as Eq. (2.5) in ref. 16 except the interchange of expres-
sions u7 and u8 due to the different ordering of configurations (7) and (8).

Equation (33) can be used to solve for J1, J2, J3, J4, M, P and the
overall constant r in terms of the weights ui. First, using the first four
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equations one solves for J1, J2, J3, J4 in terms of cosh−1(ui/2r),
i=1, 2, 3, 4. Then the overall constant r is solved from the equation

u5u6
u7u8

=
cosh 2(J1+J3)+cosh 2(J2−J4)
cosh 2(J1−J3)+cosh 2(J2+J4)

(34)

andM, P are given by

e4M=1u5u8
u6u7
2 5cosh 2(J1−J4)+cosh 2(J2+J3)
cosh 2(J1+J4)+cosh 2(J2−J3)

6 ,

e4P=1u5u7
u6u8
2 5cosh 2(J1−J2)+cosh 2(J3+J4)
cosh 2(J1+J2)+cosh 2(J3−J4)

6 .
(35)

For B sites, we note that the weights are precisely those of A sites with
the interchanges u1 Y u3, u2 Y u4, u5 Y u8, u6 Y u7. In terms of the spin
configurations, these interchanges correspond to the negation of the spins b
and c. Thus we have

WŒ(a, b, c, d)=W(a, −b, −c, d)

=2reM(ad−bc)/2−P(cd−ab)/2 cosh(J1a−J2b−J3c+J4d). (36)

This Boltzmann factor is the same as (30) with the same J1, J4, M, r and
the negation of J2, J3, and P. Namely, we have

J −1=J1, J −2=−J2, MŒ=M, rŒ=r

J −3=−J3, J −4=J4, PŒ=−P
(37)

Putting the Ising interactions together, interactions M and MŒ cancel
and we obtain the Ising representation shown in Fig. 4. The Ising model
now has five independent variables J1, J2, J3, J4, and 2P.

2P

2P-2P

-2P

-2P2P

4 -33 4

1 -22 1

4 3-3 4

1 2-2 1

Fig. 4. An Ising model representation of the odd 8-vertex model. The number −2 stands for
−J2, etc.
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4 13 -2

1 42 -3

-2 31 4

-3 24 1

Fig. 5. An Ising model representation of the odd 8-vertex model when u5=u6, u7=u8. The
number −2 stands for −J2, etc.

If we have further

u5=u7, u6=u8, (38)

then from the configurations in Fig. 2, we see that the weights now possess
an additional up-down symmetry, namely,

W(a, b, c, d)=W(d, c, a, b). (39)

Consequently we have P=−P implying P=0. The Ising model represen-
tation is then of the form of a simple-quartic lattice with staggered interac-
tions as shown in Fig. 4 with P=0.

If we have

u5=u6, u7=u8, (40)

it can be seen from Fig. 2 that the A weights have the symmetry

W(a, b, c, d)=W(c, d, b, a) (41)

and for B sites we have

WŒ(a, b, c, d)=W(−c, d−b, a). (42)

In the resulting Ising model both M and P now cancel and the lattice is
shown in Fig. 5.

6. SUMMARY

We have introduced an odd 8-vertex model for the simple-quartic
lattice and established its equivalence with a staggered 8-vertex model. We
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showed that in the free-fermion case the odd 8-vertex model is completely
equivalent to the free-fermion model of Fan and Wu in a noncritical
regime. Several Ising model representations of the free-fermion odd
8-vertex model are also deduced.
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